Statistical Analysis Plan for the efficacy trial of the Fit to Study intervention

NatCen Social Research

<table>
<thead>
<tr>
<th>PROJECT TITLE</th>
<th>Fit to Study</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEVELOPER</td>
<td>Oxford Brookes University and University of Oxford</td>
</tr>
<tr>
<td>EVALUATOR</td>
<td>NatCen Social Research</td>
</tr>
<tr>
<td>PRINCIPAL INVESTIGATOR EVALUATION LEAD</td>
<td>Vainius Bartasevicius (NATCEN)</td>
</tr>
<tr>
<td>TRIAL (CHIEF) STATISTICIAN & INSTITUTION</td>
<td>Fatima Husain (NATCEN)</td>
</tr>
<tr>
<td>SAP AUTHOR & INSTITUTION</td>
<td>Vainius Bartasevicius and Nico Jabin (NATCEN)</td>
</tr>
<tr>
<td>TRIAL REGISTRATION NUMBER</td>
<td>ISRCTN15730512</td>
</tr>
</tbody>
</table>

SAP version history

<table>
<thead>
<tr>
<th>VERSION</th>
<th>DATE</th>
<th>REASON FOR REVISION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>15/03/2018</td>
<td>Original Version</td>
</tr>
</tbody>
</table>
Table of Contents

Protocol and SAP changes ... 3
Introduction .. 3
Study design ... 4
Randomisation ... 6
Calculation of sample size .. 6
Follow-up ... 7
Outcome measures ... 8
 Primary outcome ... 8
Data and data sources .. 8
Analysis .. 8
 Primary intention-to-treat (ITT) analysis .. 8
 Interim analyses .. 9
 Imbalance at baseline for analysed groups ... 9
Sensitivity analyses .. 9
Missing data .. 9
Non-compliance with intervention .. 10
Subgroup analyses .. 11
Effect size calculation .. 11
References .. 12
Protocol and SAP changes

The changes made to the proposed analysis since the publication of the Protocol are listed below, alongside the reason for the changes.

1. In the protocol we originally proposed to stratify randomisation by gender-status of schools (co-educational or single-sex) and by geography. The latter was meant to improve implementation of teacher training. However, due to changes to the way teachers are trained (following the introduction of the online training element), this is no longer required. We also intended to retain stratification by urban/rural status, as this may reflect different existing exercise regimes and thus influence treatment effectiveness. However, stratification by both gender-status and an urban/rural status of schools proved to be impossible because all rural schools selected for the trial were co-educational. Therefore, stratification was done by the gender-status of schools only. However, we will check for any imbalances between the treatment and control groups in terms of the urban/rural status.

2. In the protocol we suggested that we would select three Year 8 form groups per school. However, we believe it would be more appropriate to randomly select the number of form groups proportionally to the school size, ensuring that each pupil and each school contribute more equally to any estimated effect.

3. It was expected that the randomisation of schools and selection of forms would be conducted at the same time. However, due to the likely changes to the number and composition of forms from Year 7 (when school level randomisation took place) to Year 8, selection of forms will take place once the final data on the year 8 forms has been obtained, and at the latest by March 2018.

4. We reviewed MDES estimates based on comments from reviewers and the sample achieved

Introduction

This statistical analysis plan sets out the details of the analysis planned for the cluster-randomised controlled efficacy trial of Fit to Study. Fit to Study aims to improve pupils’ educational outcomes by increasing pupils’ vigorous physical activity (VPA) levels.

Fit to Study is a whole-school intervention that implements a schedule of VPA in schools’ Physical Education (PE) lessons, ensuring that each pupil receives around 20 minutes of VPA per week\(^1\). Increased VPA is hypothesised to lead to improved cognition and concentration, better classroom behaviour and, after a year of increased VPA, improved attainment.

To implement the intervention, all PE teachers in participating schools receive two hours of face-to-face training (also available via online live stream), and follow-up support including online videos, delivered by a team of sports scientists from Oxford University. Oxford University is also responsible for school recruitment.

The trial aims to test a single hypothesis: Fit to Study can improve maths attainment of Year 8 pupils within one school year. Oxford University are exploring additional hypotheses about the link between measured levels of pupils’ activity and educational and fitness outcomes. These hypotheses do not form part of this trial design.

Fit to Study is implemented in the school year 2017/18. School recruitment takes place in January to April 2017, with baseline fitness testing carried out by Oxford in between April and June 2017. The randomisation took place in July 2017, followed by PE teacher training in July 2017 and September

\(^1\) The intervention requires 10 minutes of VPA per lesson, delivered as four-minute warm-up at the start of the PE lesson and three two-minute intensive bursts of VPA, called ‘fitness infusions.’ Assuming two PE lessons per pupil per week this results in around 20 minutes of VPA per pupil.
The intervention is implemented between September 2017 and June 2018, with outcome testing between June and July 2018. This is set out in Table 1.

Table 1: Fit to Study trial timetable

<table>
<thead>
<tr>
<th>School recruitment</th>
<th>Baseline testing</th>
<th>Randomisation</th>
<th>Teacher training</th>
<th>Intervention delivery</th>
<th>Outcome testing</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Design overview

Please ensure all details are in line with the latest version of the protocol.

Trial type and number of arms

- Efficacy, 2-arm trial

Unit of randomisation

- School

Stratification variables (if applicable)

- Gender-status of schools (co-educational or single-sex)

Outcomes

- primary: Maths attainment
- secondary: -

Outcome sources (instruments, datasets)

- primary: Raw scores achieved in the Progress Test in Mathematics (PTM), Level 13
- secondary: -

Study design

The trial of Fit to Study is an efficacy trial, exploring the intervention’s potential to improve outcomes, under as ideal circumstances as possible and looking at a restricted cohort (Thorpe et al. 2009). The trial is designed as two-arm (school-) cluster-randomised trial, in which pupils cluster within schools. Schools have been chosen as unit of randomisation due to the whole-school nature of the programme.

In order to take part in the trial, schools have to fulfil the following criteria:

- school type is state school or free school but not grammar school;
- the school is located in one of the following geographic regions: Greater London; Thames Valley; Southampton and Portsmouth; Bristol and Bath; Birmingham and Coventry; Cheltenham/Gloucester; or Luton, Bedford and Milton Keynes.

2 Some schools will be trained in July and others in September 2017. All schools will be provided with online training videos in September 2017.
FSM eligibility in the sample of selected schools is 16.7%. In comparison, 13.2% of pupils were known to be eligible for, and claiming, free school meals in England’s secondary schools in 2016).

In all participating schools, pupils in all Year 8 forms will receive the intervention; however, not all forms will form part of the trial. Instead, for pragmatic reasons, in each school 49% of forms will be randomly selected for trial participation. Selecting a proportion of forms relative to the school size ensures that our estimates give a more equal weighting to each pupil, rather than more weight to pupils in smaller and less weight to pupils in larger schools. Unequal probability sample without replacement will be drawn, meaning that each class may only be selected once. Sampling probabilities will be proportional to class size. Classes with larger number of pupils will have higher likelihood to be selected for the trial.

It has to be noted that classes with only one pupil will be excluded from the random selection process. The same will apply to classes with less than 10 pupils if there are classes with more than 10 pupils in the same school. These exclusions are done with the aim of testing as many Year 8 pupils as possible.

In each trial form, those pupils that do not opt out will be part of the trial.

According to the protocol, a total of 100 schools were to be recruited for the trial. A slightly higher number of schools was recruited in order to protect the final sample size if schools dropped out of the trial. The final number of recruited schools was 106 (see Table 2) although 18 of them have already dropped out of the trial. The figures provided in Table 2 will be updated based on the final data received from schools. In the report, we will also provide the numbers of classes and pupils selected for testing.

<table>
<thead>
<tr>
<th>Table 2: Recruited schools</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schools recruited</td>
</tr>
<tr>
<td>Forms within recruited schools</td>
</tr>
<tr>
<td>Forms per school</td>
</tr>
<tr>
<td>Average number of pupils per form</td>
</tr>
</tbody>
</table>

Schools participating in the trial were randomly assigned, by NatCen, to one of two intervention conditions:

- Schools in Group 1 (intervention schools) will receive the Fit to Study programme
- Schools in Group 2 (control schools) will continue with ‘business as usual’

Business as usual will involve the usual regime of PE teaching and the exercise contained within. Schools may or may not have additional opportunities for pupil exercise.

School participation is incentivised. Both control and treatment schools receive £500 for taking part in the trial, upon completion of the academic testing at the end of the trial. Both control and treatment schools receive the financial incentive, because while treatment schools receive the intervention, they also experience a high level of research burden. Control schools will not receive the intervention when the trial is complete.

Outcomes will be measured between June and July 2018, at the end of the school year in which the intervention was implemented. Other outcomes, as part of Oxford University’s evaluation, will be collected from a sample of trial pupils throughout the year.

Baseline data (Key Stage 2 Maths outcomes) will be collected from the NPD.

Randomisation

Schools were randomly assigned to treatment and control using a stratified block randomisation. Stratification was done by single-sex / co-educational status of schools. Both treatment and the comparison group have 10 single-sex schools each. Due to changes in the training of PE teachers to include online as well as face-to-face training, the geographical stratification set out in the Protocol was no longer required. Teachers who were unable to attend training sessions delivered in Birmingham, Oxford, and London could access online training. The training was designed and delivered by the developer.

In addition to assigning schools, forms in each school will be randomly selected to be part of the trial. Our approach is not a classic sampling, in which the sampled forms provide evidence of a true population (school) parameter. Instead, only the randomly sampled forms will be considered part of the trial, and the true school level parameter will be estimated in the selected classes.

Finally, we suggested in the protocol that we would select three forms per school. However, we will now select the number of forms proportionally to the school size, to better ensure that each pupil and each school contribute more equally to any estimated effect. The randomisation of forms will take place once the data on the Year 8 form groups has been obtained.

Calculation of sample size

Our original estimates of the minimum detectable effect size were based on the following assumptions:

- 90 pupils (3 forms) per school are tested
- a two-tailed test
- a significance level of 5% and power of 80%
- baseline covariates explaining 50% of variance at pupil level
- no clustering of effects at the class level.

<table>
<thead>
<tr>
<th>ICC4</th>
<th>Achieved sample size (schools)</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>80</td>
<td>90</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>0.10</td>
<td>0.21</td>
<td>0.19</td>
<td>0.18</td>
<td></td>
</tr>
<tr>
<td>0.12</td>
<td>0.22</td>
<td>0.21</td>
<td>0.20</td>
<td></td>
</tr>
<tr>
<td>0.16</td>
<td>0.26</td>
<td>0.24</td>
<td>0.23</td>
<td></td>
</tr>
</tbody>
</table>

We have updated these estimates in the light of our current knowledge of the participation status of schools. Out of 106 schools that had originally agreed to take part in the trial, 2 schools dropped out before the randomisation and further 16 schools (11 of them with a treatment status and 5 with a control) opted out in the early stages of the trial. Therefore, the number of participant schools dropped to 88. The original sample of recruited schools had an average of 6.9 forms per school and 26 pupils per form. It is important to note that our updated MDES calculations are based on the assumption of no further school-level attrition. If more schools are to drop out of the trial, MDES is likely to increase. Moreover, the number of drop outs in the treatment and control groups is unequal. This may reintroduce imbalances between the two groups that had been previously eliminated (in expectation) as a result of randomisation.

4 ICC estimates provided by the Education Endowment Foundation (2015, p.1) for Maths scores at Key Stage 4 range from 0.11 to 0.21 for different English regions. Estimates tend to be lower for younger pupils, so we would expect marginally smaller scores for Year 8 pupils. Education Endowment Foundation (2015) *Intra-cluster correlation coefficients*. London: Education Endowment Foundation.
Based on the comments from reviewers, we have also made a few changes to the assumptions that we are using in MDES calculation. The changes that were made regard the percentage of variance explained by baseline covariates and the intra-cluster correlation. Below is the full list of assumptions made in the revised calculations of MDES:

- a two-tailed test;
- a 5% statistical significance level;
- 80% power to detect an effect of at least the MDES, if an effect exists;
- 88 participant schools and no further attrition at school and pupil level;
- On average, 78 pupils per school will be tested (3 forms per school x 26 pupils on average in one form)
- 40% of pupil-level variance explained by baseline covariates\(^5\);
- 10% of school-level variance explained by baseline covariates (we lack strong evidence for selecting this figure and therefore opt for the conservative estimate);
- an intra-school correlation of 0.16\(^6\); and
- 47% of participating schools allocated to treatment.

Minimum detectable effect size (MDES) calculated with these assumptions is equal to 0.24 standard deviations. If all 106 recruited schools would have participated in the trial MDES would be 0.21 standard deviations. All calculations were performed in PowerUp!, version 01/22/2015 (Dong and Maynard 2013).

Follow-up

School enrolment and randomisation processes are summarised in the figure below.

\(^5\) EEF (2013) gives estimates of the correlation between KS2 and GCSE Maths results at 0.76, giving an estimated \(R^2\) of 0.58. However, we have conservatively estimated a lower value of 40% at pupil level.

\(^6\) ICC estimates provided by the Education Endowment Foundation (2015a, 1) for Maths scores at Key Stage 4 range from 0.11 to 0.21 for different English regions.
Outcome measures

Primary outcome

The primary outcome is maths attainment, as measured by the raw scores achieved in the Progress Test in Mathematics (PTM), Level 13 (GL Assessment 2015). The test will be administered by NatCen interviewers in schools post-treatment towards the end of the 2017/18 summer term. Interviewers will be blind to the school’s allocation and will be instructed not to enquire about the school’s allocation status. However we cannot control for schools disclosing their status to interviewers.

PTM is a standardised group test that assesses pupils’ mathematical skills and concepts. PTM Level 13 is suitable for pupils completing Year 8. The test takes 75 minutes to complete.

PTM assesses two dimensions of learning:

1. mathematical content knowledge (Curriculum Content Category); and
2. understanding and applying mathematical processes through reasoning and problem solving (Process Category).

No secondary outcomes are assessed.

Data and data sources

The analysis will include data from the sources set out in Table 3:

Table 3: Data sources

<table>
<thead>
<tr>
<th>Source</th>
<th>Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>School baseline survey</td>
<td>• Data on pupils participating in the trial including name, Unique Pupil Number (UPN), gender, date of birth, home postcode, form</td>
</tr>
<tr>
<td></td>
<td>• School level information such as school type and number of Year 8 forms and pupils</td>
</tr>
<tr>
<td>Pupil test</td>
<td>• Progress in Maths, Level 13 – the end of Year assessment of maths proficiency</td>
</tr>
<tr>
<td>National Pupil Database</td>
<td>• Baseline Key Stage 2 Maths outcome, as measured by the variable KS2_MATMRK</td>
</tr>
<tr>
<td></td>
<td>• Absence rates for pupils in Year 8</td>
</tr>
<tr>
<td>Edubase</td>
<td>• The urban/rural status of schools</td>
</tr>
<tr>
<td>Teacher logs</td>
<td>• Data on PE lessons in treatment schools, including the number of minutes of VPA during warm-up and the number of 2 minute infusions</td>
</tr>
</tbody>
</table>

Analysis

Primary intention-to-treat (ITT) analysis

The primary analysis will examine the hypothesis that F2S improves outcomes in maths, as measured using the primary outcome measure. The analysis will be conducted on an intention-to-treat basis and will include pupils in all Year 8 forms selected to be part of the trial, subject to consent and successful collection of outcome data.

Following EEF guidance (Education Endowment Foundation 2015b), evidence of effectiveness and reported effect sizes will be obtained from a baseline-adjusted analysis, in which the dependent variable is the result of the outcome test, and effects are estimated through a multilevel linear model containing a dummy variable indicator capturing treatment/control group membership, the
stratification variable (gender-status of school), and pupil level baseline test scores. The model analysed will be a two-level model in which pupils cluster in school, with schools modelled as random effects using a random intercept model (see equation (1)).

\[Test_{ij} = \beta_0 + \beta_1 \text{baseline}_{ij} + \beta_2 \text{intervention}_j + \beta_3 \text{stratiﬁers}_j + u_j + e_{ij} \]

(1)

where \(i \) presents the individual, \(j \) presents the school, and \(u_j \) is the school random effect. The intervention effect is estimated by \(\beta_2 \).

The analysis will run in R in the latest available version (R Core Team 2015) using the eefAnalytics package (Kasim et al. 2016) in the latest available version. Analysts will not be blind to treatment status of the groups.

Interim analyses

There are no interim analyses planned for this trial.

Imbalance at baseline for analysed groups

Baseline characteristics will be summarised by treatment and control group across schools and pupils. Where available variables will be presented at pupil level, otherwise at school level.

Continuous variables will be summarised with descriptive statistics (n, mean, standard deviation, range and median).

At school level, the comparison will cover:

- School type (academy, free school, etc.)
- Number of Year 8 pupils
- Number of Year 8 forms
- Urban/rural status

At the pupil level, the following baseline comparisons will be presented:

- Eligibility for free school meals
- Gender
- Key Stage 2 maths scores (obtained from the NPD)

Imbalance on baseline covariates between the treatment and control groups in the sample as analysed will be assessed for the covariates listed above using the appropriate statistical test (two-independent-sample \(t \)-test for continuous variables and Fisher’s exact test for categorical variables), with a p-value of 0.05 or smaller considered as indication of covariate imbalance. Differences in baseline outcomes will be reported as Hedges’ \(g \) effect size.

If imbalances are found to exist, a model that includes the unbalanced variables in addition to those in the main model will be estimated as sensitivity analyses.

Sensitivity analyses

Two additional sensitivity analyses will be carried out to explore the robustness of the main finding:

- An unadjusted analysis that does not include the baseline covariates;
- An adjusted analysis that includes any variables we believe are likely to be predictive of outcomes: gender, absence rate and FSM eligibility.

Missing data

Our primary analysis assumes that any missing outcome data are missing completely at random (MCAR) and uses complete case analysis. We will assess the robustness of our results to alternative assumptions about the mechanisms leading to missing data.
We will explore the number, pattern and likely reasons for missing outcome data. We will report the number of pupils with missing outcome data by treatment arm and present a comparison of baseline characteristics with observed and missing outcomes using cross-tabulations. We will then run a drop-out model to assess whether any existing covariates predict the observed loss-to-follow up pattern. We will estimate the propensity score using multivariate logistic regression. In this case, the propensity score can be thought of as the conditional probability that a pupil has been tested or a parent responded in the post-intervention questionnaire given the set of existing covariates capturing pupil/parent characteristics.

If loss-to-follow up can be predicted using existing covariates, we will impute missing outcomes using multiple imputation, under the assumption that data are missing at random (MAR). Following the new EEF guidance documentation, MI will only be carried out if the amount of missing data exceeds 5%. We will impute a number of new datasets using a two-level linear model: pupil (level 1), and school (level 2). The model will include all variables in the main analysis; any variables predictive of missingness; and variables associated with the outcome, individual-level indicators of FSM eligibility, gender and absences. The estimated regression equations will then be used to generate predicted values for the cases with missing data and estimate treatment effects and standard errors under the alternative assumption. Rubin’s rules will be used to combine the estimates from multiple datasets into an overall MI estimate.

In addition, we will explore the robustness of our results to extreme suppositions under the assumption that data are missing not at random (MNAR). We will impute the highest possible scores for missing outcome values in the treatment group and lowest possible scores for the missing values in the control group to model the best case scenario, and vice versa for the worst case scenario, and re-estimate the treatment effects in both cases. This analysis will provide a range of treatment effects under the most extreme cases of data missing not at random and therefore the upper and lower bounds of the likely effect sizes under the assumption that data is not missing at random.

Treatment Effects in the presence of Non-compliance

A complier average treatment effect (CACE) will be estimated to show the effect of Fit to Study on pupils in schools that comply with the assignment to their trial status. Compliance will be defined with reference to the proportion of VPA sessions actually delivered, out of the number of sessions that should have been delivered. CACE estimates will be reported for a range of compliance cut-offs, from 90% compliance to zero compliance. The real CACE estimation is assumed to be generated somewhere between minimal and optimal compliance thresholds.

Given that teachers and pupils in control schools do not have access to the F2S programme, the CACE can be estimated under the assumption of one-sided non-compliance. We will label any trial pupils in treatment school which did not deliver as many F2S sessions as the cut-off as non-compliant and estimate a complier average treatment effect (CACE) by dividing the ITT estimate by the share of compliers.

\[
CACE = \frac{ITT_y}{Pr(Compliers)}
\]

Teacher logs will be the main source of information when estimating compliance. Teacher logs are records containing detailed information on VPA sessions that were delivered during PE lessons in treatment schools. PE teachers in all treatment schools have been asked to enter information on every PE lesson delivered. However, as teachers need to complete the log immediately after a PE lesson, there is likely to be incomplete, missing, or inaccurate data. Therefore, it may be that a compliance estimate derived from teacher logs will not cover all treatment schools. Also, we will not

7 The number of imputed datasets will be selected based on guidance by Graham et al. (2007) who approached the problem in terms of loss of power for hypothesis testing. Based on simulations (and a willingness to tolerate up to a 1 percent loss of power), they recommended 20 imputations for 10% to 30% missing information, and 40 imputations for 50% missing information. Source: (Graham, Olchowski, and Gilreath 2007)

use teacher logs to estimate compliance in those schools which have provided information on less than 50% of PE lessons. In instances where a school does not report on each and every PE lesson but provides information on more than 50% of all PE classes, we will assume that no VPA sessions were implemented in the lessons for which we have no data.

To compensate for the potentially limited school coverage of teacher logs, we will run a second analysis which will be based on responses to a post-intervention school survey. Specifically, in the survey we will ask for an estimate of the % of Y8 PE lessons delivered as intended. Since survey data will be retrospective and will not capture the delivery of VPA in each PE lesson, this type of compliance analysis will be less accurate. However, we expect it to cover more schools than the analysis based on teacher logs.

Subgroup analyses

Two subgroup analyses will be carried out, examining whether there is evidence for a differential impact of the intervention on pupils by:

- FSM eligibility
- Gender
- Prior attainment

Estimation of subgroup effects on the primary outcome will involve the re-estimation of the adjusted model described above, with the addition of a further covariate for the particular subgroup concerned. This additional covariate will be interacted with the treatment/control group indicator. Where the coefficients resulting from this interaction reach statistical significance at the 95 per cent level, separate models will be estimated and reported for each subgroup.

Effect size calculation

Calculation of effect sizes and their variances (and thus 95% confidence intervals) will be carried out using the eefAnalytics plugin for cluster-randomised trials. This estimates the effect size following Hedges (2007), using the total pooled within-groups standard deviation, and assuming unequal cluster sizes.

The effect size will be calculated as follows:

\[d = \frac{(\bar{Y}_T - \bar{Y}_C)_{adj}}{\sigma_T} \sqrt{1 - \frac{(N - n_{TU}m_T^2 - n_{UC}m_C^2) + n_{TU}^2 + n_{UC}^2}{N - 2}} \]

(3)

Where \((\bar{Y}_T - \bar{Y}_C)_{adj}\) is the difference between the treatment and control group means taken from the model (1) above, controlling for baseline and stratification variables only. The denominator \(\sigma_T\) is calculated as the unconditional variance of model (1), i.e. has no variables entered other than the treatment effect indicator. This calculation assumes meta-analytic inference is aimed at the population of individuals. It is calculated, as follows:

\[\sigma_T = \sqrt{\sum_{i=1}^{m_T} \sum_{j=1}^{n_{Ti}} (Y_{ij}^T - \bar{Y}_T)^2 + \sum_{i=1}^{m_C} \sum_{j=1}^{n_{Ci}} (Y_{ij}^C - \bar{Y}_C)^2} \]

(4)

The second term on the rhs of (3) is calculated using the following:

\[n_{TU} = \frac{(N_T)^2 - \sum_{i=1}^{m_T} (n_{Ti}^T)^2}{N_T(m_T - 1)} \]

\[n_B = \frac{(N_C^2 - \sum_{i=1}^{m_C}(n_i^C)^2)}{N_C(m_C - 1)} \]

\[N = N^T + N^C \]

\[v(d_i) = \left(\frac{N^T + N^C}{N^T N^C} \right) (1 + (\bar{n} - 1)\rho) + \left[\frac{(N-2)(1-\rho)^2 + A\rho^2 + 2B\rho(1-\rho)\bar{d}^2}{2(N-2)[(N-2) - \rho(N-2-B)]} \right] \]

\[\bar{n} = \frac{N_C \sum_{i=1}^{m_T}(n_i^T)^2}{N^T N} + \frac{N^C \sum_{i=1}^{m_C}(n_i^C)^2}{N^C N} \]

\[A_T = \frac{(N_T)^2 \sum_{i=1}^{m_T}(n_i^T)^2 + (\sum_{i=1}^{m_T}(n_i^T)^2)^2 - 2N_T \sum_{i=1}^{m_T}(n_i^T)^3}{(N_T)^2} \]

\[A_C = \frac{(N_C)^2 \sum_{i=1}^{m_C}(n_i^C)^2 + (\sum_{i=1}^{m_C}(n_i^C)^2)^2 - 2N_C \sum_{i=1}^{m_C}(n_i^C)^3}{(N_C)^2} \]

\[B = n_B^T (m^T - 1) + n_B^C (m^C - 1) \]

\[\rho = \frac{\sigma_B^2}{\sigma_T^2} \]

\[\sigma_B = \sqrt{\frac{\sum_{i=1}^{m_T} \sum_{j=1}^{m_T} (v_i^T - \bar{v}^T)(v_j^T - \bar{v}^T) + \sum_{i=1}^{m_C} \sum_{j=1}^{m_C} (v_i^C - \bar{v}^C)(v_j^C - \bar{v}^C)}{m^T + m^C - 2}} \]

We will convert to Hedge's g, following the usual formulae:

\[J(df) = 1 - \frac{3}{4df - 1} \]

\[g = J(df)d \]

\[v_g = [J(df)]^2 v_d \]

\[SE_g = \sqrt{v_g} \]

Confidence intervals will be calculated using the 95% threshold, i.e. ±1.96SEg.

References

Department for Education. *Schools, pupils and their characteristics: January 2016*. Statistical release based on January 2016 School Census data;

