Sutton Trust-EEF Teaching and Learning Toolkit
& EEF Early Years Toolkit

Technical appendix and process manual
(Working document v.01)
July 2018
Table of Contents

1. Introduction.. 5
 1.1. The manual as a working document ... 6
2. Acknowledgements.. 7
3. Toolkit strands ... 8
 3.1. Strands in earlier versions ... 8
 3.2. Adding new strands to the toolkit .. 10
4. The systematic search process ... 11
5. Identification.. 12
 5.1. Identification- standards ... 12
 5.2. Identification - keywords ... 12
 5.3. Identification - search engines and databases .. 14
6. Screening .. 16
 6.1. Screening – type of study ... 16
 Systematic reviews ... 16
 Meta-analysis ... 16
 Single studies ... 16
 6.2. Screening – type of outcome .. 17
 Reading ... 17
 Writing ... 17
 Oral language (speaking and listening) .. 17
 Mathematics ... 17
 Cognitive tests .. 17
7. Inclusion .. 18
8. Data extraction ... 19
 8.1. Coding and data extraction ... 19
9. Single studies ... 20
 Table 9.1: Inclusion criteria for single studies ... 21
10. Creating effect size estimates ... 24
 10.1. Choice of outcomes ... 24
 10.2. Choice of measure for a given outcome .. 24
 10.3. Choice of effect size ... 24
 Weighted mean ... 24
 Median .. 25
 Mean .. 25
 Indicative ... 25
11. Translating effect size to months’ progress ... 26
 Table 11.1: Converting effect size to months’ progress for the Toolkit ... 28
12. Evidence security ratings .. 30
13. Cost estimates .. 34
 13.1. How we derive the costs .. 34
14. Toolkit strand summary text .. 36
15. Updating the Toolkit ... 37
16. Strand Technical Appendix .. 38
 Definition .. 38
 Search terms .. 38
 Evidence rating ... 38
1. Introduction

The Sutton Trust-EEF Teaching and Learning Toolkit is an accessible summary of educational research which provides guidance for teachers and schools on how to use their resources to improve outcomes for learners. It currently covers a range of topics, each summarised in terms of their average impact on attainment, the strength of the evidence supporting them and their cost.

The aim of the Toolkit is not to provide definitive claims as to what will work to bring about improvement in a new context. Rather it is an attempt to provide the best possible estimate of what is likely to be beneficial based on the existing evidence. In effect, it summarises what has worked as a ‘best bet’ for what might work in the future. The applicability of this information to a new context is always likely to need active professional investigation and evaluation to ensure it achieves the desired effects.

The first page of the Toolkit presents comparable information for each of the topics or ‘strands’ in the Toolkit. This summary contains:

- An estimate of the average impact of relevant interventions, presented in terms of expected months’ progress. This is based on an effect size estimate derived from a synthesis of meta-analytical effect sizes in existing meta-analyses and quantitative systematic reviews, where there is sufficient data to combine these estimates. This calculation is referred to as a ‘meta-meta-analysis’. The effect size estimate itself is included in the technical appendix to each strand.
- An evidence security rating reflecting the quality, quantity and consistency of the evidence used to derive the effect size.
- A cost rating reflecting the approximate additional cost per pupil of implementing such interventions in schools.

Each Toolkit strand then has a page which includes:

- A definition of the strand topic and explanation of how it is relevant to teaching and learning in schools;
- Discussion of the impact of the approach on key outcomes for schools;
- An overview of how secure the evidence is for this topic;
- A brief explanation of the cost rating (Section 5.8).

A range of other information is presented for each strand: links to further reading and related EEF projects and resources. There is also a technical appendix (see section 16) which details the evidence drawn upon for each strand.

This document provides detail on how the Toolkit is maintained and updated, and the methods used to derive the estimates and supporting information for each strand. It refers to the Teaching and Learning Toolkit, but unless otherwise stated the methods and process apply equally to the Early Years Toolkit.
1.1. The manual as a working document

This is the first version of this manual, which will be kept updated as the Toolkit methodology is further refined over time. We would welcome any comments, which should be addressed to Danielle.mason@eefoundation.org.uk.
2. Acknowledgements

The first version of the Toolkit was originally commissioned by the Sutton Trust and produced as the ‘Pupil Premium Toolkit’ by Durham University in May 2011. Since its launch in 2011 the Education Endowment Foundation has funded significant further development, including expansion from the initial 12 strands to over 30 in the current Toolkit. An early years version of the Toolkit was launched in 2015.

The initial source of studies for the Toolkit was a database of meta-analyses of educational interventions developed for an ESRC Researcher Development Initiative (RES-035-25-0037) between 2005-2010. Repeated systematic searches have since been undertaken for systematic reviews with quantitative data (where effect sizes are reported but not pooled) and meta-analyses (where effect sizes are combined to provide a pooled estimated of effect) of intervention research in education in each of the areas of the Toolkit.

The Toolkit has been developed and written over five years by a team of people: Professor Steve Higgins, Dr Maria Katsipataki, Dr Alaidde Berenice Villanueva Aguilera (School of Education, Durham University), Dr Dimitra Kokotsaki, Professor Rob Coe (CEM Centre, Durham University), Dr Lee Elliot Major (The Sutton Trust), Robbie Coleman, Peter Henderson, Jonathan Kay and Danni Mason (Education Endowment Foundation).

Feedback from schools and teachers has been and remains an important part of the development of the Toolkit. Thanks in particular go to ARK and teachers from the TeachFirst Future Leaders programme, a group of Hammersmith and Ealing deputy headteachers and a number of teachers in the North-East of England who were generous with their time in attending conference or workshop presentations about early drafts of the Toolkit.

The toolkits should be cited as:

3. Toolkit strands

3.1. Strands in earlier versions

The initial themes for the *Toolkit* (see Table 3.1) were based on expectations of how schools seemed likely to spend the Pupil Premium in England when it was first announced in 2010 as a means to improve educational outcomes for disadvantaged pupils.

A number of areas were specifically included at the request of teachers who have been consulted at different stages in the development of the *Toolkit*.

Some of these topics (for example School Uniforms and Performance Pay) had limited evidence to support an estimate of effect. However, it seemed important to summarise the evidence in areas of interest to practitioners both where the evidence was strong, and where the evidence was weaker. Knowing that there is an absence of robust evidence is also important in terms of informing professional decisions in schools. For topics with limited evidence, this was reflected in the padlock rating (see section 12 below).
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Ability grouping</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>After school programmes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arts participation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Assessment for learning</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aspiration interventions</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Behaviour interventions</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Block scheduling</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Collaborative learning</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Digital technology (ICT)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Early years intervention</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Extending school time</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Feedback</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Homework</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Homework (Primary)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Homework (Secondary)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Individualised instruction</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Learning styles</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mastery learning</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mentoring</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metacognition and self-regulation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>One to one tuition</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oral language interventions</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Outdoor adventure learning</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parental involvement</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peer tutoring</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Performance pay</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phonics</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Physical environment</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reading comprehension strategies</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reducing class size</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Repeating a year</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>School uniform</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Setting or streaming</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Small group tuition</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Social and emotional learning</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sports participation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Summer schools</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Teaching assistants</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Within class grouping</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- ○ Strand added
- ● Strand discontinued and/or merged
3.2. Adding new strands to the toolkit

There are over 30 strands in the main UK version of the
Toolkit and a further 12 in the early years version. When considering whether to add new strands, we aim to strike a balance between being comprehensive and presenting a manageable amount of information in order to maintain accessibility, and allow comparison across strands.

New topics are considered for inclusion as a strand in the *Toolkit* if they are:

i) Approaches commonly mentioned in education policy;

ii) Suggestions from teachers and schools;

iii) Approaches with a strong evidence of effectiveness not covered by either previous criterion;

A new strand covering a particular approach can be added to the Toolkit if any of the below criteria apply:

i) Schools are using or may be advised to use the approach *and* the evidence suggests the approach is harmful or ineffective or that the approach is expensive and there is limited evidence about its effectiveness;

ii) Schools are not using, or may be advised not to use an approach which the evidence indicates or suggests is cost-effective;

iii) There is demand from teachers as to what the evidence says about the approach;

iv) There are popular misconceptions about the evidence or the strength of the evidence available about the approach;

v) New evidence has become available about the approach which would be of value to schools or teachers.
4. The systematic search process

Each Toolkit strand is updated with new evidence found through systematic searches around every 2 years. Revisions to the live Toolkit are made two or three times a year. New strands are introduced in accordance with the criteria above. The following sections set out the evidence review process for creating a new strand or updating an existing one.

Figure 5.1 below provides more detail on the distinct steps of the review process, using the PRISMA categories of:

- Identification
- Screening
- Eligibility
- Inclusion

Further detail on each step is provided in the following sections. Further detail on PRISMA is provided in section 5.
5. Identification

5.1. Identification- standards

The PRISMA framework is used as the basis for our systematic reviewing and meta-analysis. More details can be found at http://www.prisma-statement.org. The aim is to conduct searches for relevant research as exhaustively and systematically as possible.

Searches are undertaken for systematic reviews with quantitative data (where effect sizes are reported but not pooled) and meta-analyses (where effect sizes are combined to provide a pooled estimated of effect) of intervention research in education in each of the areas of the Toolkit. In addition, a separate search is undertaken for single studies to ensure the most recent evidence is included in any Toolkit update. See section 9 for more detail on the use of single studies in the Toolkit.

5.2. Identification - keywords

Keywords are initially defined from the strand definition (e.g. Collaborative Learning includes cooperative/collaborative learning; group activities; cooperative/collaborative learning instruction/strategies). We then test a range of synonyms and cognate terms to assess whether they significantly improve the comprehensiveness of the search, and if so we add them to the keywords (e.g. collaborative group work, group interaction). The keywords for each strand are reviewed each time a strand is updated. If any new systematic reviews or meta-analyses were found in the previous update, the search terms used in them are compared with the current strand search terms. They are added to the current strand search terms if they are consistent with the definition and extend the comprehensiveness of the search.

When searching for new meta-analyses and systematic reviews these terms are also included: ‘meta-analysis’; ‘quantitative synthesis’; ‘systematic review’.
Figure 5.1 Simplified overview of the Toolkit search and inclusion process

Identification

- PRISMA Standards
- Key words (5.2)
- Strand specific keywords recorded
- Saved in Systematic Search Records spreadsheet
- Recorded in strand Technical Appendix
- Total number of hits recorded
- Saved in Systematic Search Records spreadsheet

Screening

- Search engines and databases (5.3)
- Search results
- Screen 1 (Screen on title and abstract: 6)
- Details of retained studies recorded
- Retrieved studies are saved
- Saved in Systematic Search Records spreadsheet
- Screen 2 (Full text screening: 6)

Eligibility

- Application of ‘whole strand’ inclusion criteria (7) to decide selected studies
- Data extraction for selected studies (8.1)
- Selected studies coded on a range of variables in data table
- Saved in Toolkit Data Table

Inclusion

- Effect size for strand derived from data extraction (10)
- Regression analysis summarised for strand text
- Effect size calculation added to Toolkit Data Table and included in Technical Appendix
- Regression outcomes saved in Strand Summary file.
- Strand page text drafted/updated
5.3. Identification - search engines and databases

The search engines and gateways used are: FirstSearch, EBSCO, JSTOR, Web of Science, Science Direct, Google Scholar¹ and ProQuest Dissertations. The following review journals are also screened for recent systematic reviews and meta-analyses: the American Education Research Association’s Review of Educational Research, the European Association for Research on Learning and Instruction’s Education Research Review and the British Education Research Association’s Review of Education are identified. Other resources that are checked are the pages of What Works Clearing House (WWC), Best Evidence Encyclopaedia (BEE) and the Evidence for Policy and Practice Information (EPPI) Centre, Washington State Institute for Public Policy, The Danish Clearinghouse for Educational Research, The Norwegian Knowledge Centre for Education, The Campbell Collaboration and The Cochrane Database. Table 5.1 below provides more detail.

Table 5.1: Search gateways and databases used for Toolkit searches

<table>
<thead>
<tr>
<th>Gateway</th>
<th>Key Database(s)</th>
<th>Coverage</th>
<th>Advanced search capability</th>
</tr>
</thead>
</table>
| FirstSearch | ClasePeriodica
Ebooks
ECO
ERIC
GPO
MEDLINE
OAIster
PapersFirst
Proceedings
WorldCat
WorldCatDissertations | Searches WorldCat database & central index of >2,400 e-content collections
+ > 200 million article records in WorldCat.org | Boolean limiters
Title/abstract/ full text |
| EBSCO | British Education Index
Education Abstracts
ERIC
PsychARTICLES
PsychINFO
Child Development & Adolescent Studies | Through listed databases | Boolean limiters
All/any limiters
Smart search (natural language queries) |
| Google Scholar | Website index of ‘scholarly articles’ (based on pdf structure) | Internet with access to academic publishers’ metadata | Limiters
Title/ abstract/ full text |
| JSTOR | JSTOR holdings | >2300 journals | Boolean + limiters
Title/ abstract/ full text |

¹ Whilst Google Scholar is estimated to cover 80-90% of ‘scholarly’ publications in English, it ranks search results (weighting the full text of each article, the author, the publication in which the article appears, and how often the piece has been cited in other scholarly literature), potentially increasing publication bias. It does, however, also include unpublished reports and conference papers.
<table>
<thead>
<tr>
<th>ProQuest Dissertations</th>
<th>ProQuest Dissertation & Theses Global (PQDT Global)</th>
<th>Largest single repository of graduate dissertations and theses; 3.8 million studies, with 1.7 million in full text; 100K documents added per year</th>
<th>Boolean limiters Title/abstract/full text</th>
</tr>
</thead>
<tbody>
<tr>
<td>ScienceDirect</td>
<td></td>
<td>over 750 social science journals</td>
<td>Boolean limiters Title/abstract/full text</td>
</tr>
<tr>
<td>Web of Science</td>
<td>Social sciences database</td>
<td></td>
<td>Boolean limiters + Title/abstract/full text; Wildcards * ? $</td>
</tr>
</tbody>
</table>

The key words are combined in different ways according to the search engine or database syntax: we might use Boolean operators (AND, OR, NOT), search limiters and wildcards (? * $). For example, for ‘collaborative learning’ adding the wildcard ‘collaborat*’ returns keywords ‘collaboration’, ‘collaborative’, ‘collaborate’.

The number of hits produced by each keyword search and by each search engine, and the number of studies retrieved are recorded in the “Systematic Search Records” file.

Occasionally relevant studies which have not been identified through the search are found by other means (such as journal alerts, recommendations, general internet searches or by serendipity). In such cases, the search terms for the relevant strand are modified for the next update, to create a search which identifies the new study (and other relevant studies like it) while ensuring that the search terms do not become so broad as to be incompatible with the strand definition. This has always been possible to date.

Occasionally, some but not all of the studies included in a meta-analysis are relevant to a Toolkit strand. Where this is the case, if the meta-analysis includes a subgroup analysis using only studies relevant to the strand, or a relevant regression analysis, the effect size from that analysis will be used. Otherwise, the overall meta-analysis effect size is used if a majority of studies used in the meta-analysis are relevant to the Toolkit strand.

In some cases, the Toolkit search processes will identify a meta-meta-analysis on a Toolkit topic. Meta-meta-analyses are not generally used to calculate effect sizes in the Toolkit, but they can be used to identify relevant meta-analyses which have not been captured by the existing search processes (and to update the search terms accordingly – see section 5.2).

Some meta-analyses only contain studies which are included in other meta-analyses. In these cases, duplicate meta-analyses are removed, giving primacy to the most recent meta-analyses.
6. Screening

The results of the search are screened twice, first on abstract and title only, then on the full text, as described below. In both cases, studies are excluded according to the following criteria:

- **Topic**: the study is excluded if the topic of the study is not relevant to the strand.
- **Type of study**: the study is excluded if it is not a meta-analysis or systematic review with effect sizes of the impact of the intervention either reported or calculable. (A separate search is done for single studies with quantitative data – see Section 9.
- **Type of outcome**: the study is excluded if it does not present data on either standardised tests, cognitive tests or curriculum tests (e.g. schools assessments or national tests or examinations) or researcher designed measures of educational attainment.
- **Sample**: the study is excluded if it does not contain data for either Early Years (2-5) or school age children (5 to 18)

The reason that there are two screening steps is that it is not always possible to assess these criteria from the title and abstract alone. For all studies which cannot be definitively excluded on these criteria using title and abstract alone, the full text retrieved for the second screening.

6.1. Screening – type of study

At the screening stage studies are excluded unless they are either a meta-analysis or a systematic review with quantitative data (a separate search is done for single studies with quantitative data – see Section 9.

Systematic reviews

A systematic review has an explicit search strategy and inclusion criteria, together with a description of the way in which the data from different studies are synthesised.

Meta-analysis

A meta-analysis is usually based on a systematic review. The quantitative data from different studies are combined or ‘pooled’ using specific statistical techniques. Weights are assigned to each study based on criteria specified in advance in order to evaluate the overall effect.

Single studies

If no meta-analyses or systematic reviews with quantitative data are available, then effect sizes from single studies are used for the strand impact estimate (see section 9).

Since 2015, single studies retrieved from a parallel search have also been used where available to create a new but basic meta-analysis for all strands which is then included in the meta-meta-analysis calculation. This is to ensure that recent high quality single studies which have not yet been included in any meta-analyses are reflected in the overall effect size estimate. For more detail on this see section 9.
6.2. Screening – type of outcome

Studies are excluded during the screening process unless they present data on cognitive outcomes or attainment outcomes. The aim is to use measures which predict later educational outcomes well.

The attainment outcomes measured include reading, writing, oral language and mathematics outcomes or outcomes from other subjects of the school curriculum, and the cognitive outcomes include reasoning and problem-solving skills.

The outcomes can be measured by standardised tests, cognitive tests or curriculum tests (e.g. schools assessments or national tests or examinations) or researcher designed measures of educational attainment. Some examples of different outcomes are provided below.

Reading

A wide range of reading outcomes are used in the studies including reading comprehension, vocabulary knowledge, letter and word recognition and phonological knowledge and skills (also described as ‘word attack’ or word-level skills).

Writing

Few standardised writing measures are available, most estimates rely on specific researcher designed measures which often measure quantity (for example total length or number of sentences) and use quality indicators, relating to sentence complexity, grammatical construction or vocabulary measures.

Oral language (speaking and listening)

Some research uses measures of speaking and listening skills. These are often used to predict later reading capability, particularly for very young children.

Mathematics

Measures of mathematics outcomes are usually based on the topics or academic outcomes that are being researched.

Cognitive tests

Examples of tests used include the Cognitive Abilities Test (CAT - GL Assessment); Ravens Progressive Matrices and Vocabulary Scales (Pearson), Watson-Glaser Critical Thinking Appraisal, Piagetian reasoning skills.
7. Inclusion

After the screening process for meta-analyses and systematic reviews has been completed (on title and abstract and then on full text – see section 6), and any single studies have been identified and meta-analysed (see section 9), a final set of inclusion criteria are applied to the retained studies for each strand, as described below.

According to these final criteria, meta-analysis and systematic reviews which are based wholly on observational studies are excluded, unless there are no meta-analysis and systematic reviews which are based on experimental or quasi-experimental studies, and there are not sufficient single studies based on experimental data from the single study search to provide a secure pooled estimate (usually at least 5 studies are needed for a secure pooled estimate).

In exceptional cases, a review based on observational data will be retained in the case where there are no meta-analysis and systematic reviews which are based on experimental data, and it is judged that the single studies based on experimental data do not on their own sufficiently reflect the likely heterogeneity of impact for approaches within that strand. This judgement is based on the scale and quality of the individual studies, drawing on the CONSORT reporting guidelines² and the Cochrane risk of bias tool³. Most educational studies do not meet these criteria.

In addition, observational studies are only included when they include correlational estimates relevant to the relationship between an intervention or approach and learning outcomes.

Definitions

In experimental studies, an intervention is intentionally introduced and the result is observed. For example, in randomised controlled trial studies, two or more groups are formed through random allocation to provide equivalence over known and unknown variables, and then post-test outcomes on the variable of interest are compared.

Quasi-experimental studies lack random allocation, but attempt to simulate its effect, for example by comparing outcomes for the control group with those from a group which have been 'matched' to the control group on known variables.

In observational studies the intervention is not assigned to a particular group. Instead, data is collected from a group already receiving the intervention in the population.

Experimental and quasi-experimental studies are preferred over observational studies because they deliver stronger causal inference⁴, based on the counterfactual comparison.

² http://www.consort-statement.org
³ http://methods.cochrane.org/bias/assessing-risk-bias-included-studies
8. Data extraction

8.1. Coding and data extraction

After the final inclusion criteria have been applied (as described in Section 7), the remaining studies are coded on the following variables and the data recorded in the Toolkit Data Table spreadsheet:

a) Study name
b) Pooled effect size (for meta-analyses or systematic reviews with quantitative data) or overall effect size (single studies)
c) FSM effect size (if applicable)
d) Effect Size type: g, d, Δ, r, g(c) (see appendix 4 on effect sizes in education research)
e) Standard Error (SE)
f) Standard Deviation (SD)
g) Confidence Intervals (CI) 95%
h) Effect Size Range (Max/ Min)
i) Number of Studies (k)
j) Number of Effects
k) Number of pupils (N)
l) Pupils’ age or age range
m) Moderator Analysis: Yes, No, Unclear
n) Publication Bias Evaluated: Yes, No, Unclear
o) Meta-Analysis: Yes, No
p) Study quality reported: Yes, No, Unclear

This data is saved in the Toolkit Data Table as shown in Figure 5.1
9. Single studies

As discussed in Section 6, in order to ensure that recent high quality studies not yet included in reviews are captured by the search process, a separate search of single studies is done for each Toolkit strand.

The single studies search has the same process and criteria as described in sections 5, 6, 7 and 8, with three exceptions.

First, the search terms differ, not in terms of the topics of studies but in terms of their methodologies. For example, methodological limiters such as ‘experiment’ ‘RCT’ and ‘trial’ will be added, which are not necessary for the meta-analysis search because they will be captured by search terms such as ‘meta-analysis’ and ‘systematic review’.

Second, studies are excluded during the screening process unless they are single studies with:

- quantitative evidence of impact, with effect size data reported or calculable (for example, randomised controlled trials, well-matched experimental studies, regression discontinuity studies or natural experiments with appropriate analysis); or
- correlational estimates of effects related to the intervention or approach being studied.

Third, whether studies are included depends on an additional set of criteria as described in the table below. These criteria differ depending on the security rating of the relevant strand at the time of the update, as shown in Table 5a. The rationale is that new single studies should be reflected in the strand impact estimate, except where their inclusion would reduce the overall quality of evidence used to create the impact estimate.

For a single study to meet the criteria (for a given strand security rating) it must meet all the requirements for design, scale, quality, context, outcomes and publication date in the relevant row.
<table>
<thead>
<tr>
<th>Security rating of strand before inclusion of single studies</th>
<th>Strand inclusion criteria for single studies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Design</td>
<td>Scale</td>
</tr>
<tr>
<td>5</td>
<td>Effect size calculable from a design with very strong causal inference (e.g. a very high quality RCT, RRDD, or well-matched experimental design)</td>
</tr>
<tr>
<td>4</td>
<td>Effect size calculable from a design with strong, or very strong, causal inference (e.g. a high quality RCT, RRDD, well-matched experimental design)</td>
</tr>
<tr>
<td>3</td>
<td>Effect size calculable from a design with at least moderate causal inference (e.g. a moderate quality RCT, RRDD, matched experimental design)</td>
</tr>
<tr>
<td></td>
<td>Effect size calculable from a design with at least some causal inference (e.g. RCT, RRDD, experimental design)</td>
</tr>
<tr>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>2</td>
<td>Effect size calculable from a comparison of those who have received the intervention/ approach with those who have not (i.e. experimental and observational designs).</td>
</tr>
</tbody>
</table>
When these criteria have been applied, the effect size estimates for remaining single studies for any given strand are used to create a new fixed effect meta-analysis.

If a single study identifies a single primary outcome, then this outcome is used in the new fixed effect meta-analysis.

If a single study does not identify a single primary outcome, then up to four outcomes from the study can be used in the new meta-analysis, one relating to each categories from the list below. (If more than one effect size is available for any of the categories in this list, the most robust appropriate effect size is used for that category).

- literacy or literacy related outcomes
- mathematics or mathematics related outcomes
- curriculum-wide outcomes
- cognitive outcomes

If outcomes are available for more than one of the categories listed above, a pooled effect size will usually be calculated for the study before it is added into the new meta-analysis.

This new fixed effects single study meta-analysis estimate then contributes to the calculation of the overall impact estimate for the strand (see section 10 for more detail on how strand effect size estimates are created).

It is important to note that these internal meta-analyses are not treated as published meta-analyses or systematic reviews for the purposes of allocating evidence ratings to the Toolkit strands (see section 12).
10. Creating effect size estimates

When the final set of included studies has been determined for each strand, an overall estimate of effect size is calculated, depending on the available data.

10.1. Choice of outcomes

In some cases, meta-analyses and reviews report an effect size (or data from which an effect size is calculable) for more than one outcome. In these cases only one effect size should be used for each of the following types of outcomes:

- literacy or literacy related outcomes
- mathematics or mathematics related outcomes
- curriculum-wide outcomes
- cognitive outcomes

Where appropriate, we might pool two different estimates from a meta-analysis before including them in the meta-meta-analysis for the Toolkit estimate.

10.2. Choice of measure for a given outcome

For literacy, priority is given to outcomes measuring reading skills. In descending order:

- reading comprehension
- word reading skills
- letter and sound knowledge
- vocabulary knowledge

An exception would be made to this if the measures used for the preferred outcome were of much lower quality that those used for one of the other outcomes.

For mathematics, priority is given to standardised measures of mathematics attainment where these are available.

10.3. Choice of effect size

Effect sizes are calculated as follows:

Weighted mean

Where confidence intervals and/or standard errors around the pooled effect size are available, an inverse variance weighted mean effect size is calculated as the overall estimate. There are two types of weighted mean commonly used in meta-analysis: the fixed effect and the random effects. A **fixed effect** model assumes that there one common effect size shared among all the included studies and any observed differences can be assigned to sampling error alone. A **random effects** model assumes that the effect size might differ from study to study and the average is based on the variability both within and between studies (Borenstein, Hedges &
Rothstein, 2007). The toolkit uses a fixed effect model to create the weighted means as this allows the combination of pooled effects.

In order to calculate a weighted mean effect size for the meta-meta-analysis, we need a standard error for each meta-analytic effect size included in the calculation.

If a case arose where most of the included meta-analyses provided sufficient data to allow the calculation of a weighted mean, but a small proportion didn’t report a standard error or provide sufficient data for a standard error to be calculated, it might be considered appropriate to exclude those meta-analyses in order that a more robust weighted mean could be calculated rather than a median or a mean.

Median

If there is insufficient data to calculate a weighted mean, a median effect size is calculated as an overall estimate. The median is used rather than the mean because it is less affected by extreme values and tends to be closer to the weighted mean in cases where it is possible to calculate both.

Mean

In cases where the range of effect sizes is unusual or sparse such that the median is judged to provide an unsatisfactory estimate, a mean value is calculated as the overall estimate.

Indicative

If it is not possible to calculate a weighted mean, median or mean effect size, (or, exceptionally, where we judge that using such an effect size may be misleading in some way, for example, because the relevant studies have been disproportionately carried out with a particularly unusual group of pupils or an unusual context) an indicative effect size is estimated from the best available data. For example, if the studies only present estimates for the correlation coefficient (r), these could be used to derive an indicative effect size based on the magnitude of r, which can then be converted to a standardised mean difference (d).
11. Translating effect size to months’ progress

The Toolkit translates effect sizes into months of additional progress (see Table 11.1, below). This is to provide a comparable estimate of impact which is more easily understood than effect sizes and which can be applied to children across the age range of the toolkits (age 3 to age 18). The aim is to provide a single measure of impact which makes the research results meaningful to users who are not familiar with effect sizes.

In order to do this we started with Glass’ observation that “the standard deviation of most achievement tests in elementary school is 1.0 grade equivalent units; hence the effect size of one year’s instruction at the elementary school level is about +1” (Glass, 1981: 103).

Using the assumption that 1 year of progress is equivalent to 1 standard deviation, it is possible to translate effect sizes into months progress, because the unit of effect size is a standard deviation. So, if 1 year of progress is 1 SD, then 1 month of progress is about 0.09 SD – an effect size of 0.09 (1/12).

This approach provides a simple way to translate effect size into a measure that is meaningful for teachers and educational professionals.

However, the precise correspondence of one standard deviation to one year’s progress does not hold for all ages and across different studies. For example, in the UK, data5 from National Curriculum tests (DfES, 2004) indicates annual progress of about 0.8 of a standard deviation at age 7 (at the end of Key Stage 1), falling to 0.7 at 11 (at the end of Key Stage 2) and only 0.4 at age 14 (end of Key Stage 3).

This raises an issue which is more to do with effect size calculation than the EEF method of converting effect sizes into months of progress. In general, as children get older, the ratio of the progress in attainment made over the past year, to the spread of attainment across the cohort, reduces (in other words, the ratio of annual progress to spread reduces). This means that if we think of intervention effect sizes as ‘average progress made in attainment’ divided by ‘the spread of attainment’, the same effect size will tend to correspond to a larger proportion of an average year of progress for older pupils. So, using effect sizes may lead to underestimating the months of progress delivered for older pupils compared to younger pupils. This doesn’t mean there’s anything wrong with effect sizes, it’s just that they are designed to measure average change relative to spread, not average change relative to average annual progress.

By converting effect sizes into months progress, it would be possible to address this problem, by taking into account the differing ratios of annual progress to spread discussed above. However, this simply isn’t possible when we are working with meta-analytic effect sizes, which

5 http://www.education.gov.uk/rsgateway/DB/SBU/b000481/b02-2004v2.pdf, with thanks in particular to Michelle Weatherburn and Helen Evans at the Department for Education for identifying this data and providing support with the interpretation of National Test data.
will include results from children of a range of ages. Instead we use the ratio at age 7, when 1 year of progress is broadly equivalent to 1 standard deviation, as stated above.

In recognising this limitation, it is important to emphasise two things. First, the EEF months progress measure is proportional to effect size: a bigger effect size always equates to more months’ progress. So in terms of the comparing different Toolkit strands, looking at the EEF months progress measure is just the same as looking at effect sizes. Second, by using the ratio we observed for children at the relatively young age of 7, the estimates of months progress in the Toolkit may tend to under-estimate impact for strands with more studies conducted with older children, but might over-estimate impact for those with more studies undertaken with very young children. In general, however, our overall estimates will be conservative, and on balance we have decided that defining 1 year of progress as 1 SD provides a simple measure which can be used across the age range, based on annual progress for younger learners, to create a single scale of progress, understandable for all pupils.

Overall, and despite the limitations of this approach in terms of precision, we think that the conversion makes effect size data more accessible to practitioner and other users of the Toolkit.

For future iterations of the Toolkits we are considering ways to present a months’ progress figure which takes into account pupil age and test type.
Table 11.1: Converting effect size to months’ progress for the Toolkit

<table>
<thead>
<tr>
<th>Months’ progress</th>
<th>Description</th>
<th>Effect Size from</th>
<th>... to</th>
</tr>
</thead>
<tbody>
<tr>
<td>-12</td>
<td>Negative</td>
<td>-1.00</td>
<td>-0.96</td>
</tr>
<tr>
<td>-11</td>
<td>Negative</td>
<td>-0.95</td>
<td>-0.88</td>
</tr>
<tr>
<td>-10</td>
<td>Negative</td>
<td>-0.87</td>
<td>-0.79</td>
</tr>
<tr>
<td>-9</td>
<td>Negative</td>
<td>-0.78</td>
<td>-0.70</td>
</tr>
<tr>
<td>-8</td>
<td>Negative</td>
<td>-0.69</td>
<td>-0.62</td>
</tr>
<tr>
<td>-7</td>
<td>Negative</td>
<td>-0.61</td>
<td>-0.53</td>
</tr>
<tr>
<td>-6</td>
<td>Negative</td>
<td>-0.52</td>
<td>-0.45</td>
</tr>
<tr>
<td>-5</td>
<td>Negative</td>
<td>-0.44</td>
<td>-0.36</td>
</tr>
<tr>
<td>-4</td>
<td>Negative</td>
<td>-0.35</td>
<td>-0.27</td>
</tr>
<tr>
<td>-3</td>
<td>Negative</td>
<td>-0.26</td>
<td>-0.19</td>
</tr>
<tr>
<td>-2</td>
<td>Negative</td>
<td>-0.18</td>
<td>-0.10</td>
</tr>
<tr>
<td>-1</td>
<td>Negative</td>
<td>-0.09</td>
<td>-0.02</td>
</tr>
<tr>
<td>0</td>
<td>Very low or no effect</td>
<td>-0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>1</td>
<td>Low</td>
<td>0.02</td>
<td>0.09</td>
</tr>
<tr>
<td>2</td>
<td>Low</td>
<td>0.10</td>
<td>0.18</td>
</tr>
<tr>
<td>3</td>
<td>Moderate</td>
<td>0.19</td>
<td>0.26</td>
</tr>
<tr>
<td>4</td>
<td>Moderate</td>
<td>0.27</td>
<td>0.35</td>
</tr>
<tr>
<td>5</td>
<td>Moderate</td>
<td>0.36</td>
<td>0.44</td>
</tr>
<tr>
<td>6</td>
<td>High</td>
<td>0.45</td>
<td>0.52</td>
</tr>
<tr>
<td>7</td>
<td>High</td>
<td>0.53</td>
<td>0.61</td>
</tr>
<tr>
<td>8</td>
<td>High</td>
<td>0.62</td>
<td>0.69</td>
</tr>
<tr>
<td>9</td>
<td>Very High</td>
<td>0.70</td>
<td>0.78</td>
</tr>
<tr>
<td>10</td>
<td>Very High</td>
<td>0.79</td>
<td>0.87</td>
</tr>
<tr>
<td>11</td>
<td>Very High</td>
<td>0.88</td>
<td>0.95</td>
</tr>
<tr>
<td>12</td>
<td>Very High</td>
<td>0.96</td>
<td>1.00</td>
</tr>
</tbody>
</table>

Effect sizes are rounded to 2 decimal places.
It is important to note that this is slightly different from the table used to convert Effect Sizes to months’ progress for EEF projects. Specifically, the boundaries for the zero months band are different (because of differences in the precision of effect size estimates from single studies and meta-analyses).
12. Evidence security ratings

The Toolkit presents a rating of the security of the evidence for each approach. This is illustrated on the Toolkit website using a padlock icon so it is sometimes referred to as the 'padlock' security rating. This rating provides an overall estimate of the robustness of the evidence, to help support professional decision-making in schools.

These security ratings take into account:

- the quantity and types of studies available;
- the outcomes measured in those studies;
- The strength of causal inference provided by those studies; and
- the consistency of estimated impacts across the studies that have been synthesised.

Table 12.1 below provides more detail on how the ratings are allocated. In most cases it is clear which rating should be allocated. However, because of the complexities involved in, for example, assessing the appropriate causal inference from a given study, expert judgement is needed in some cases.

These ratings are designed to summarise the strength of the causal inference for impact on learning outcomes in schools, the quantity and consistency of the findings (both the overall pooled effect and the pattern of effects relating to moderator variables) and the ecological validity of the studies (where studies took place in schools with interventions managed by teachers rather than researchers). The focus of the Toolkit is on providing advice to schools about how to spend additional resource to benefit disadvantaged learners, so these are judged to be the most relevant criteria.

The requirements for each padlock rating have recently been reviewed and minor adjustments have been made to improve the methodological coherence of the Toolkit as a whole. For some strands, these revisions will not feed through into the published toolkit until the next Toolkit updates. In other cases, allocating a padlock rating, even with the criteria shown below, requires professional judgment, for example, regarding the strength of causal inference. We aim to use the Technical Appendix provided for each Toolkit strand to provide transparency about the role that judgement plays. We welcome constructive debate about the padlock rating and how it is applied. Comments should be addressed to Danielle.mason@eefoundation.org.uk.

For the purposes of this Table 12.1, a "meta-analysis" is a quantitative synthesis of effect sizes for the impact of the intervention based on a systematic review or a systematic review with a pooled effect size for the impact of the intervention reported or calculable. The mini-meta-analysis carried out on single studies by the Toolkit team as detailed in section 9 is not included in this definition.
<table>
<thead>
<tr>
<th>Security of evidence criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>Very limited: One padlock</td>
</tr>
</tbody>
</table>

Quantity and type of study:
- Single studies with quantitative evidence of impact with effect size data reported or calculable (such as from randomised controlled trials, well-matched experimental designs, regression discontinuity designs, natural experiments with appropriate analysis); and/or
- observational studies with cor relational estimates of effect related to the intervention or approach; but
- no publicly available meta-analyses (see section 5.3 for the search process used to identify publicly available studies).

Outcomes:
- Any cognitive or learning outcomes.

Causal inference:
- weak or very weak causal inference, based on observational data (correlational associations between the intervention or approach and attainment outcomes) or single studies.

Consistency requirements:
- none

<table>
<thead>
<tr>
<th>Limited: Two padlocks</th>
</tr>
</thead>
</table>

Quantity and type of study:
- At least one publicly available meta-analysis

Outcomes:
- For at least one of the publicly available meta-analyses, the majority of underlying studies use education attainment outcomes such as standardised tests, cognitive tests, curriculum tests (e.g. schools assessments or national tests or examinations) or researcher designed measures of educational attainment.

Causal inference:
- At least one of the publicly available meta-analyses has at least weak causal inference: a limited number of included studies have appropriate designs (such as randomised controlled trials, well-matched experimental designs, regression discontinuity designs, natural experiments with appropriate analysis).

Consistency requirements:
- none

<table>
<thead>
<tr>
<th>Moderate: Three padlocks</th>
</tr>
</thead>
</table>

Quantity and type of study:
- Two or more publicly available meta-analyses which meet the following criteria:
 - They have explicit inclusion and search criteria, risk of bias discussed, and tests for heterogeneity reported
- They include some exploration of methodological features such as research design effects or sample size.

Outcomes:
- The majority of underlying studies in at least two of these meta-analyses, use education attainment outcomes including standardised tests, cognitive tests and curriculum tests (e.g. schools assessments or national tests or examinations) or researcher designed measures of educational attainment.

Causal inference:
- At least two of the meta-analyses have moderate causal inference: a higher number of included studies have appropriate designs (such as randomised controlled trials, well-matched experimental designs, regression discontinuity designs, natural experiments with appropriate analysis).

Consistency requirements: none

Extensive: Four padlocks

<table>
<thead>
<tr>
<th>Quantity and type of study:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Three or more meta-analyses which meet the following criteria:</td>
</tr>
<tr>
<td>- They have explicit inclusion and search criteria, risk of bias discussed, and tests for heterogeneity reported</td>
</tr>
<tr>
<td>- They include some exploration of the influence of methodological features such as research design effects or sample size on effect size.</td>
</tr>
<tr>
<td>- The majority of included studies should be from school or other usual settings (i.e. studies with ecological validity, with lessons taught by usual staff or with typical conditions for non-school settings, rather than laboratory studies).</td>
</tr>
</tbody>
</table>

Outcomes:
- Nearly all of the underlying studies in at least three of the meta-analyses use education attainment outcomes including standardised tests, cognitive tests and curriculum tests (e.g. schools assessments or national tests or examinations)

Causal inference:
- At least three meta-analysis have strong causal inference: most included studies have appropriate designs such as randomised controlled trials, well-matched experimental designs, regression discontinuity designs and natural experiments with appropriate analysis.

Consistency requirements:
- The majority of the meta-analytical effect sizes are within 0.5 SDs of each other, or the variation is broadly consistent, with the differing inclusion criteria and largely explained by the moderator analyses.

Effect Size requirements:
- Effect size must be a mean, median or weighted mean, rather than indicative.

Very Extensive: Five padlocks

<table>
<thead>
<tr>
<th>Quantity and type of study:</th>
</tr>
</thead>
<tbody>
<tr>
<td>At least five meta-analysis which meet the following criteria</td>
</tr>
<tr>
<td>- They have explicit inclusion and search criteria, risk of bias discussed, and tests for heterogeneity reported,</td>
</tr>
<tr>
<td>- They explore which features of the intervention or approach might explain variation in impact (moderator analysis).</td>
</tr>
</tbody>
</table>
• The majority of included studies should be from school or other usual settings (i.e. studies with ecological validity with lessons taught by usual staff or with typical conditions for non-school settings, rather than laboratory studies).
• At least three of these meta-analysis have been carried out within the last 3 years.

<table>
<thead>
<tr>
<th>Outcomes:</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Nearly all of the underlying studies in at least five of the meta-analyses use education attainment outcomes including standardised tests, cognitive tests and curriculum tests (e.g. schools assessments or national tests or examinations)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Causal inference:</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Those meta-analysis have strong causal inference: most included studies having appropriate designs, such as randomised controlled trials, well-matched experimental designs, regression discontinuity designs and natural experiments with appropriate analysis.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Consistency requirements:</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Results are broadly consistent across the meta-analyses (i.e. the spread of the pooled effects is relatively narrow, such as less than 0.5 standard deviations, or the variation is consistent with the differing inclusion criteria and largely explained by the moderator analyses).</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Effect Size requirements:</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Effect size must be a mean, median or weighted mean, rather than indicative.</td>
</tr>
</tbody>
</table>
13. Cost estimates

Cost estimates are based on the additional likely costs of adopting or implementing an approach with a class of twenty-five pupils in England.

The banding used for the cost rating is shown in Table 13.1.

Table 13.1: Cost rating bands for EEF Toolkit

<table>
<thead>
<tr>
<th></th>
<th>Cost Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>£</td>
<td>Very low: up to about £2,000 per year per class of 25 pupils, or less than £80 per pupil per year.</td>
</tr>
<tr>
<td>££</td>
<td>Low: £2,001-£5,000 per year per class of 25 pupils, or up to about £200 per pupil per year.</td>
</tr>
<tr>
<td>£££</td>
<td>Moderate: £5,001 to £18,000 per year per class of 25 pupils, or up to about £720 per pupil per year.</td>
</tr>
<tr>
<td>££££</td>
<td>High: £18,001 to £30,000 per year per class of 25 pupils, or up to £1,200 per pupil.</td>
</tr>
<tr>
<td>£££££</td>
<td>Very High: over £30,000 per year per class of 25 pupils, or over £1,200 per pupil.</td>
</tr>
</tbody>
</table>

13.1. How we derive the costs

Cost estimates are based on the additional expenditure required from a school to begin implementing the approach. This might include, for example:

- the cost of new resources required, such as lessons plans or technological hardware or software.
- the cost of training courses or CPD to support a new approach, and teacher cover to enable this to happen.
- the cost of activities for pupils such as outdoor education programmes or music tuition.

Cost estimates do not include the cost of resources which are necessary for the intervention but which are schools are expected to already have, such as interactive whiteboards, or teachers (unless an additional new teacher is required to deliver the intervention).

This means that the Toolkit cost estimates do not reflect the total absolute cost of the different intervention types in the Toolkit, which would include the opportunity costs of using existing resources in a particular way.

They also do not distinguish between start-up costs (such as training teachers to deliver an intervention or investment in new technologies) and maintenance costs (how much it costs to continue with a programme or approach after it has been established).

However, we think presenting costs in terms of additional expenditure makes it most useful to schools leaders deciding how to allocate budgets.

The costs are derived from the following sources:

- Published research (e.g. EEF studies or other studies where costs are provided)
- Publically available cost information (e.g. from providers’ web pages).
Costs estimated by the toolkit team based on the constituent costs of the interventions, using web searches (e.g. using pay scales for salary costs for teachers and teaching assistants).

A judgement is made based on what information is available and what seems likely to be needed for implementation. More detail will be available in the next version of this manual.

We prioritise cost estimates coming from UK over US or other countries. This is to provide a local estimate where possible.

Costs are checked and updated as part of the regular updates for each strand (see section 15).
14. Toolkit strand summary text

The summary text accompanying each Toolkit impact estimate draws on a range of information. It is primarily based on studies identified in the systematic search for impact estimates. Note that some of these may be studies which did not meet the final inclusion criteria for inclusion in the calculation of the effect size estimate, but which still have information which is useful in defining the intervention or approach or in helping understand the effective use of the approach.

For the original Toolkit published in 2011, some of the studies used in the summary text were not identified through systematic searches. However, as of 2015, to be used in the textual summary a study has to be identified through the systematic search and be:

- a systematic review with quantitative evidence of impact; a meta-analysis; or a single study which meets the criteria for inclusion in terms of quality for the strand (see Section 9); or
- a high-quality review or robust study which does not contain quantitative estimates of effect size but which contains additional data which can help to explain the observed variation in the individual effect size estimates which have contributed to the overall effect size estimate and/or information about application of the evidence in schools; or
- a conceptual analysis of the intervention or approach in the strand which helps to clarify the underlying causal mechanisms and/or implementation issues in schools.

Any reference to impact or relative effectiveness in the text is supported by causal inference from the quantitative estimates for the strand and/or the effect sizes and regression analyses from the meta-analytic data.
15. Updating the Toolkit

The process described above for creating a Toolkit strand is repeated for each strand as part of the regular Toolkit updates (undertaken around every 2 years to date), to ensure that the Toolkit remains a live resource. For each update, we go back to existing included studies and check the dates of publication, then begin the systematic search starting from an earlier date of publication (usually five years) so that any lag in indexing or publication does not mean studies are missed (if the search terms for a strand have been revised since the last update, then we search on those new terms for the full range of dates – from 1980 for meta-analyses and from 2000 for single studies). The inclusion criteria are therefore the same as for new strands but involve a more recent date range restriction.
16. **Strand Technical Appendix**

For each strand of the *Toolkit* a technical appendix is available on the strand webpage. It contains the following sections:

Definition

A more detailed definition than provided on each *Toolkit* strand webpage. This is extended and clarified where necessary so it shows how the definition is operationalized and what interventions would not be captured.

Search terms

Search terms for the search described in section 5 are included, though all variants of the terms used (plurals, different spellings etc.) are only recorded on the search record spreadsheet.

Evidence rating

Provides details to explain how the padlock rating was awarded.

Additional cost information

Provides information about how the cost estimates were derived.

References

A list of references used to compile the *Toolkit* entry, including all meta-analyses, systematic reviews and single studies used to derive the impact estimate. Other reviews and studies used for the strand summary text (see section 14) are also included. Where possible a web reference or digital object identifier is included so as to facilitate access to the sources of the Toolkit. References are presented in a format similar to the American Psychological Association (APA) format.

Summary of effects

A table presents the effect sizes used to estimate the overall impact for the *Toolkit* together with the estimate itself.

If data is available to calculate a separate effect size for disadvantaged pupils it is also recorded here. However, the definition of disadvantaged pupils may not be strictly comparable between studies. For example, some studies use eligibility for free school meals as an indicator of disadvantage, whilst others use high household poverty.

Meta-analyses abstracts

The abstracts from each of the meta-analyses or systematic reviews used to calculate the impact estimates for each strand are included for further background detail.
Appendix 1: Background to the Toolkit - The Pupil Premium in England

The Sutton Trust-EEF Teaching and Learning Toolkit arose from work funded by the Sutton Trust to review potential effective use by schools of the pupil premium grant in England when it was first proposed in 2010 (Higgins, Kokotsaki & Coe, 2011). Initially the pupil premium was set at £488 per eligible pupil in 2011-12, rose to £600 in 2012-13, to £953 per eligible child in primary schools and £900 for secondary pupils in 2013-14, then £1320 for primary and £935 for secondary in 2014-15. The current value of the Pupil Premium can be found on the Department for Education webpage:

https://www.gov.uk/government/organisations/department-for-education

The policy proposal was that schools should be given the money and would be accountable for how they spent it, but decisions about how to spend the money would be up to the schools themselves. A number of suggestions of ways in which the money should be spent were made at the time, such as to reduce class size or to provide additional one-to-one tuition. Some of this advice encouraged schools to spend the grant on things that evidence suggested were not cost effective. For example, the research suggests that reducing class size is expensive for the potential benefit, and in some circumstances one-to-two teaching can be as effective as one-to-one, but at almost half the cost.

The cost bands for the Toolkit cost rating (see section 13) were initially created to reflect the value of the pupil premium per child.
Appendix 2: Rationale for the Toolkit

This appendix sets out the rationale for the development of the Sutton Trust-EEF Teaching and Learning Toolkit and the reasons we think it can support schools to make better decisions. The primary aim of the Toolkit is to provide schools with evidence from education research to help them make informed decisions about spending to support pupils' learning.

The aim of the Toolkit is not to provide definitive claims as to what will work to bring about improvement in a new context. Rather it is an attempt to provide the best possible estimate of what is likely to be beneficial based on existing evidence. In effect it summarises what has worked in order to provide a 'best bet' for what might work in the future. The applicability of this information to a new context is always likely to need active professional enquiry and evaluation to ensure it achieves the desired effects.

That is why we always talk about the Toolkit evidence as only one element of the school improvement process. Good application of the Toolkit evidence requires contextual knowledge and professional educational expertise as well.

Our emphasis is on identifying comparative messages from research. In summarising each field, a number of judgements have had to be made about the applicability of the evidence in relation to the challenge of improving outcomes for learners.

We believe that educational research can help schools get better value from their spending. This is both in terms of making an initial choice between possible strategies, and then in implementing a strategy or approach as effectively as possible. We are not saying that approaches which are unsuccessful on average can never work or that approaches like feedback and metacognitive approaches will always work in a new context, with different pupils, a different curriculum and undertaken by different teachers. However, we believe that the existing evidence provides information and insight that is useful to schools as they make decisions about spending and about their teaching priorities.

There are, of course, some limitations to the meta-analytic approach we have taken in creating the Toolkit. The quality of the evidence within any area is variable and one of the issues in meta-analysis is that some of the subtleties of these issues are lost in aggregation. There is also considerable variation in each of the themes that have been summarised for the Toolkit. For further discussion of these issues see Higgins (2016).

Overall we think that the messages in the Toolkit are encouraging for teachers. The evidence summarised in the Toolkit shows that many of the things that have the greatest impact on outcomes are related to teacher practice and the choices individual teachers make in the classroom.

We do not believe that there are any guarantees from the evidence. Teachers and schools will need to try out these ideas and evaluate their usefulness in improving learning. Sometimes this needs perseverance to create the conditions in which learners can respond to feedback or take more responsibility for their learning. Another way of looking at these approaches is seeing them as means to set up a context in which learning is more or less likely to improve. The actual improvement will depend on the extent to which learners actually think harder,
more deeply or more frequently about what is being learned and their teachers can support, challenge, extend and develop this thinking.

Further information about the background to the use of meta-analysis (and meta-meta analysis) in education can be found in Higgins (2016) and further details about the approach to the Early Years Toolkit and the Teaching and Learning Toolkit in Higgins and Katsipataki (2016).

Resources and pupil learning

Decisions about how to allocate school funds have been increasingly devolved schools. But making these decisions is not straightforward.

It is difficult to establish a clear link between educational expenditure and pupils’ learning in schools. Analysis of spending per pupil and scores on the Third International Maths and Science Study (TIMSS) found ‘no association between spending levels and average academic achievement’ even after controlling for variables such as family background and school characteristics’ (Hanushek & Woessman, 2010). However, most of the studies have been undertaken at the system level (e.g. whole countries, states or local authorities) where the relationship between allocation of resources and differences in schools, teachers and pupils is highly complex. It may seem obvious that more money offers the possibilities for a better or higher quality educational experience, but the evidence suggests that it is not simply a question of spending more to get better results. This may be because in the UK and other developed countries we spend reasonably efficiently, and increased effectiveness comes at much greater cost (Steele et al., 2007). Much of the early research in this area failed to find a convincing connection for a range of reasons (Burtless, 1996), though meta-analyses of such studies indicated there was a sufficient connection to warrant increased spending (e.g. Greenwald et al. 1998). More recent research suggests that there is a link between spending and outcomes, but that it is a complex picture (e.g. Vignoles et al., 2000) and that higher quality data sets are required to understand the mechanisms by which spending and learning are associated (Levačić & Vignoles, 2002). Some analyses suggest that the effects of greater spending tend to influence mathematics and science more than English in UK secondary schools (Steele et al., 2007) and that disadvantaged pupils may benefit more (Holmund et al. 2010; Pugh et al. 2011).

Over the period 1997-2011 per capita spending in England increased by 85% in real terms (based on projections in DCSF, 2009). During the same period improvements in pupil outcomes were marginal on most international and comparative measures (e.g. Tymms, 2004; Tymms and Merrell, 2007; NFER, 2011; OECD, 2011). It is hard to identify any clear link between increased spending and school performance in England (Heath, Sullivan, Boliver, Zimdars, 2013).

Investing for better learning, or spending so as to improve learning, is therefore not easy, particularly when the specific aim is to support disadvantaged learners whose educational trajectories are harder to influence. Much depends on the context, the school, the teachers (their levels of knowledge and experience), the learners (their level of attainment and their social background) and the educational outcomes that you want to improve (knowledge, skills
or dispositions). Improving test scores in arithmetic in the short term, for example, may not raise students’ aspirations for what further learning in mathematics may accomplish for them.

We interpret the lack of a clear causal link between general additional spending and learning to mean that it is difficult to spend additional resource effectively to improve learning and to increase attainment, but that there must be some areas which offer better prospects than others. This is what this Toolkit seeks to provide.

We also think that the evidence shows that if schools want to use any additional resource, such as the Pupil Premium, to benefit disadvantaged learners they should not assume that any increased allocation alone will improve learning, but they will need to decide specifically and deliberately how it should be spent, and then evaluate the impact of this for themselves. The existing research indicates that this is a challenging but achievable task.
Appendix 3: Causal inference and evaluation of impact, By Professor Steve Higgins.

The Toolkit is based on meta-analyses of education research studies. As detailed in section 12, a higher evidence rating is allocated to Toolkit strands which are supported by studies providing greater causal inference. This Appendix discusses the relationship between evaluation design and causal inference.

Impact evaluation in education usually means assessing the effects of policies, programmes and initiatives or other approaches to bring about intentional change in terms of valued educational outcomes for learners. The aim of such research is to identify the effect so as to provide a retrospective assessment of whether the policy, intervention or approach was actually responsible for any changes in outcomes for learners (Higgins, 2017). The aims of the initiative will therefore determine the main questions for the evaluation (Rossi, Lipsey & Freeman, 2003). These are usually causal questions as policy makers, practitioners and researchers want to know whether the initiative has actually been responsible for any improvement.

Impact evaluation therefore tends to be summative rather than formative, in that the aim is to identify the effects of what has happened, rather than improve the effectiveness of a policy or intervention for the future. A key concept in any assessment of effectiveness or evaluation of impact or is therefore understanding the nature of any comparison being made, or the ‘counterfactual’ condition. We would ideally like to know what would have happened to pupils’ learning both with and without the initiative taking place. This is not possible, of course, as a single student cannot both experience and not experience an initiative. We can’t run a parallel worlds experiment in real life. So, different kinds of comparisons provide evidence for a stronger or weaker argument about the robustness of any causal claim in terms of whether an initiative has had an effect or not. The nature of the particular counterfactual or comparison in an impact evaluation affects what is a plausible explanation and a reasonable interpretation of the findings. More specifically, it affects the internal validity of the evaluation claims: what is the evidence that it has actually worked? Each of the approaches to impact evaluation in Table A3.1 (below, adapted from Higgins, 2017) seek to understand whether an initiative has achieved its aims or not. The strength of the claim weakens as the comparison is less capable of providing evidence that the change being evaluated is the actual cause of any improvement. The counterfactual comparison becomes less convincing the greater the threats to internal validity.

7 Impact evaluation may, of course, also include the effects of change on educational systems or on the perceptions of those involved, rather than outcomes for learners.
<table>
<thead>
<tr>
<th>Design</th>
<th>Counterfactual</th>
<th>Internal validity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Experimental</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Randomised controlled trial</td>
<td>Comparison of average outcomes from random allocated groups of students who are equivalent and either do or do not experience the change.</td>
<td>Provides a counterfactual which can infer causation. Controls for selection or allocation bias, regression to the mean effects and temporal effects; controls for both known and unknown characteristics which may influence learning outcomes (the majority of the time with a sufficient sized sample), except for the play of chance. Can control for the effects of innovation or novelty with an appropriate design (e.g. three arm trial with “business as usual” and “placebo” comparison). Provides a population average treatment effect (when the sample is randomly sampled from the population of interest and is sufficiently large).</td>
</tr>
<tr>
<td>Regression discontinuity</td>
<td>Statistical model of average outcomes just above the cut-off in relation to the outcomes from all students, where students can be randomised around the cut-off.</td>
<td>Controls for selection and maturation effects by modelling the pre-post relationship at the cut-off point. This cut-off point must not be manipulable (i.e. the cut-off is arbitrary on all but the cut-off scale). Does not control for effects of innovation or novelty. Assumes pre-post relationship can be accurately modelled. Provides a local average treatment effect (i.e. inference may be limited to those around the cut-off point).</td>
</tr>
<tr>
<td>design (RDD)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quasi-experimental design</td>
<td>Comparison of average outcomes from allocated groups of students who are non-equivalent and either do or do not experience the change.</td>
<td>Provides a limited counterfactual which can infer limited causation. Does not control for selection or allocation bias, regression to the mean effects and temporal effects; does not control for and any unknown characteristics which may influence learning outcomes. Does not control for effects of innovation (unless more than one intervention condition is included). Provides a sample average treatment effect.</td>
</tr>
<tr>
<td>(QED)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Observational</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Natural experiments</td>
<td>Outcomes from similar students who do not experience the change.</td>
<td>Does not control for selection or allocation bias that is related to unobserved or unmatched characteristics. Groups must be sufficiently similar for analysis (matching). Does not control for effects of innovation.</td>
</tr>
<tr>
<td>Matched comparison groups</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Difference in difference</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(regression)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Time-series (e.g. single</td>
<td>Outcomes from the same students, a number of times before and after a change (usually a minimum of three occasions).</td>
<td>Does not control for selection or allocation, other external change, or maturation and growth. Can provide limited causal inference if input and output variables correlate strongly (e.g. use of a particular approach in some time periods but not others).</td>
</tr>
<tr>
<td>group design)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Randomisation aims to take account of both known and unknown factors which may account for differences in groups, as opposed to matching, which controls for known factors (such as age, gender, socio-economic background, special educational attendance). Randomisation therefore aims to take account of aspects of the complexity of a context which may not be known in advance. Experimentation is a deliberate inquiry which makes intentional change and aims to identify the effects of that change. A further goal may be to identify and test a specific causal model or to validate how the change has been effective or which students benefited most. Approaches such as theory-based evaluation seek to do this by having a clear conceptualization or logic model which attempts to explain how the policy or intervention produces the desired effects (Fitz-Gibbon & Morris, 1996). In this approach factors or features of the theoretical model are included in the evaluation design so that any association can also be explored. This might include aspects of fidelity (tracking how faithfully those involved adopted the changes in practice) or measures which might indicate changes in participants’ behaviours or the processes of the new practices being evaluated which are consistent with the theory and which would therefore be expected to be clearly correlated with successful outcomes. If ‘evidence’ is taken here to mean ‘causal evidence of impact’, then it seems clear that such evidence is necessary for decision-making in education. We need to know whether some things have been successful or not: whether they ‘worked’ as intended.
Appendix 4: Effect sizes in education research

What is an effect size?

An effect size\(^8\) is a key measure in intervention research and an important concept in the methodology of the Toolkit. It is a standardised way of measuring the extent of the difference between two groups: in this context, a group who have received the intervention and a group who have not. It is easy to calculate, and can be applied to any measured outcome for groups in education or in research more broadly.

The value of using an effect size to assess the impact of an intervention is that it quantifies the effectiveness of a particular intervention, relative to a comparison group, and it does so in a comparable way which allows results from different research projects to be compared and combined. It allows us to move beyond the simplistic, ‘Did it work (or not)?’ to the far more important, ‘How well did it work across a range of contexts?’ It therefore supports a more scientific and rigorous approach to the accumulation of knowledge, by placing the emphasis on the most important aspect of the intervention – the size of the effect – rather than its statistical significance, which is dependent upon both the effect size and sample size. For these reasons, effect size is the most important tool in reporting and interpreting effectiveness, particularly when drawing comparisons about relative effectiveness of different approaches.

Effect sizes allow you to compare groups, relative to the distribution of scores. The effect size is the standardised mean difference between two groups. This is calculated by finding the difference between the control and intervention groups, divided by their spread (standard deviation). There has been some debate over the years about exactly how to calculate the effect size (see below), however in practice most of the variations in approaches make very little difference to the calculated effect size in the majority of contexts where effect sizes are calculated using data on pupils’ learning (see Xiao, Higgins & Kasim (2016) for a comparison of Glass’ \(\Delta\), Cohen’s \(d\) and Hedges’ \(g\) across 20 outcomes from EEF trials). It is important to remember that, as with many other statistics, the effect size is based on the mean difference between two groups. It does not mean that all of the pupils will show the same difference, it represents the average difference between the groups. The mean difference is moderated by the spread of the groups (the standard deviation). The greater the spread, relative to the mean, the smaller the effect size.

For those concerned with statistical significance, it is still readily apparent in the confidence intervals surrounding an effect size. If the confidence interval includes zero, then the effect

\(^8\) Effect sizes can be thought of in two broad categories: first, those which compare the extent of the differences between two groups or standardised mean differences, such as Cohen’s \(d\) or Hedges \(g\); and second, variance-accounted for effect sizes, such as \(\eta^2\), \(\omega^2\) or \(R^2\) which report the extent to which overlap of key variables is explained. A third group of corrected effect sizes (Vacha-Haase and Thompson, 2002), are variations of these two, but which attempt to adjust for sampling issues. Some effect sizes can be converted mathematically into others (\(d\) to \(r\), for example). However, it is important to bear in mind the research design from which data is analysed and the precise calculation method used in understanding the comparability of particular effect size measures (Coe, 2004). The Toolkit focuses on standardised mean difference as a measure of the impact of different interventions.
size would be considered not to have reached conventional statistical significance. The advantage of reporting effect size with a confidence interval is that it lets you judge the size of the effect first and then decide the meaning of conventional statistical significance. So a small study with an effect size of 0.8, but with a confidence interval which includes zero, might be more interesting educationally that a larger study with a negligible effect of 0.01, but which is statistically significant.

Methods of calculation

Over the years there have been a number of methods proposed to calculate the appropriate standard deviation for use in deriving an effect size. The main approaches are listed below.

Glass's Δ

Gene V. Glass (1977) proposed an estimator of the effect size that uses only the standard deviation of the control group, this is commonly referred to as Glass's Δ (delta). He argued that if several interventions or treatments were compared with the control group it would be better to use just the standard deviation from the control group, so that effect sizes would not differ under equal means and different variances.

Cohen's d

Cohen's d is defined as the difference between two means divided by an unspecified standard deviation for the data. This definition of Cohen's d is termed the ‘maximum likelihood estimator’ by Hedges and Olkin (1985).

Hedges' g

Hedges' g, suggested by Larry Hedges (1981) is based on a standardized mean difference, like the other measures, but the pooled standard deviation is computed slightly differently from Cohen's d, in that it contains a correction factor for small sample sizes.

‘g (corrected)’ or ‘d’

Hedges’s g is biased for small sample sizes. However, this bias can be adjusted (g (corrected)). Hedges and Olkin (1985) refer to this unbiased estimate as d, but it is not the same as Cohen's d. In most recent meta-analyses when an effect size is referred to as Hedges’s g it is the bias-corrected formula which has been used, though some studies also refer to this as d.

What does it mean?

As an example, suppose we have two classes of 25 students, one class is taught using a feedback intervention, the other is taught as normal. The classes are equivalent before the intervention. The intervention is effective with an effect size of 0.8. This means that the average person in the class receiving the feedback intervention (i.e. the one who would have been ranked 12th or 13th in their class) would now score about the same as the person ranked
in a control class which had not received the intervention. Visualising these two individuals provides a valuable interpretation of the difference between the two effects (see Figure 1).

Another way to interpret effect sizes is to compare them with effect sizes of differences that are familiar. For example, Cohen (1988, p.23) describes an effect size of 0.2 as 'small', and gives to illustrate the point an example that the difference between the heights of 15 year old and 16 year old girls in the US corresponds to an effect of this size. An effect size of 0.5 is described as 'medium' and is 'large enough to be visible to the naked eye'. A 0.5 effect size corresponds to the difference between the heights of 14 year old and 18 year old girls. Cohen describes an effect size of 0.8 as 'grossly perceptible and therefore large' and equates it to the difference between the heights of 13 year old and 18 year old girls.

As a further example, he states that the difference in IQ between holders of the PhD and 'typical college freshmen' is comparable to an effect size of 0.8.

Hattie (2009) concludes that most things in education 'work' with an average affect size of about 0.4, and that this should therefore be a benchmark.
Although the labelling of effect sizes as small, medium or large on this basis (Cohen, 1988) corresponds with the overall distribution of effects found in education research with an average around 0.4 (Sipe and Curlette, 1997; Hattie and Timperley, 2007), a ‘small’ effect may be educationally important if, for example, it is easy or cheap to attain or is achievable with groups who are otherwise hard to influence. Similarly, a large effect size may not be important if it is unrealistic to bring it about in normal circumstances. Cohen does acknowledge the danger of using terms like ‘small’, ‘medium’ and ‘large’ out of context. Glass and colleagues (1981, p104) are particularly critical of this approach, arguing that the effectiveness of a particular intervention can only be interpreted in relation to other interventions that seek to produce the same effect. They also point out that the practical importance of an effect depends entirely on its relative costs and benefits. In education, if it could be shown that making a small and inexpensive change would raise academic achievement by an effect size of even as little as 0.1, then this could be a very significant improvement, particularly if the improvement applied uniformly to all students, and even more so if the effect were cumulative over time.

As a standardised metric an effect size can also be converted to other measures for comparison: e.g. “students at Phoenix Park outperformed those at Amber Hill in the national school-leaving examination (the General Certificate of Secondary Education, or GCSE) by, on average, one third of a grade, equivalent to a standardized effect size of 0.21” (Wiliam et al. 2004: 50). So using this conversion, an effect size of 0.8 would be equivalent to an improvement of just over one GCSE grade.

There are a number of reasons for preferring a conservative estimate of what it likely to be achievable in practice. One problem is that estimates of the effects of interventions come from research studies that may optimise rather than typify their effects. For example, research is
often conducted by advocates of a particular approach; considerable care is often taken to ensure that the intervention is implemented faithfully in the research setting; outcome measures used in research studies may be better aligned with the aims and focus of the intervention than other more general measures. It may be therefore be unrealistic to expect schools to achieve the gains reported in research whose impact may be inflated (this is what Cronbach and colleagues (1980) called 'super-realisation bias'). Other evidence suggests that effect sizes will also be smaller as interventions are scaled up or rolled out (Slavin & Smith, 2008).

How comparable are effect sizes?

There are some notes of caution in comparing effect sizes across different kinds of interventions. Effect size as a measure assumes a normal distribution of scores. If this is not the case, then an effect size might provide a misleading comparison. If the standard deviation of a sample is decreased (for example, if the study does not contain the full range of a population) or inflated (for example, if an unreliable test is used), the effect size is affected. A smaller standard deviation will increase the effect size, a larger standard deviation will reduce it. Another issue is which standard deviation is chosen (Bloom et al., 2008) as this primarily determines the comparability of the effect size (Coe, 2004). This explains some of the variation in methods discussed above. This is also relevant to how effect sizes are calculated from linear regression models (Hedges, 2007; Xiao, Kasim & Higgins, 2016).

There is also evidence that there is some systematic variation in effect sizes in education. One factor, for example, is the age of the pupils, where studies with younger learners tend to have higher effect sizes. One reason for this is likely to be the narrower distribution of scores at this age, producing a smaller standard deviation and therefore a larger effect size, though there is also a relationship with the subject (e.g. mathematics or English) being researched (Hill, Bloom & Lipsey, 2009). In England the standard deviations of National Test scores increase from 3.9 at age 7, to 4.3 at age 11, and 6.8 at 14 as the distribution of scores widens and flattens (DfES, 2004). This would change a mean difference of 3 National Curriculum points from an effect size of 0.8 at age 7, to 0.7 at age 11 and 0.4 at age 16.

There is also some variation associated with the type of outcome measure with larger effect sizes typically reported in mathematics and science compared with English (e.g. Higgins et al., 2005) and for researcher designed tests and teacher assessments compared with standardised tests and examinations (e.g. Hill et al., 2007: 7).

It is also important that any comparison in an experimental design is a fair one. One issue is what the control or comparison group did, or the ‘counterfactual’ (Higgins, 2017). In general there are three possibilities here. The first is that they did nothing at all. This might be the case with a summer school intervention where it is reasonable to evaluate the difference between going to summer school or not going. The second is that you might want to find out if a new approach is better than what usually happened or “business as usual” where the impact of peer-tutoring in reading is compared with what other schools or classes normally do to teach reading. The challenge here is that what the counterfactual group did is rarely reported. The third is that there may be two interventions which are compared, often referred to as an “active control” where you find out if one approach to teaching spelling is better than another approach, when both are newly introduced to different classes or schools. This controls for

Durham University
any innovation effect of introducing something new. It seems like likely that effect sizes would be tend to be greatest where the comparison group does nothing, smaller where the comparison group is business as usual and smaller again when there is an active control.

A related issue here is which outcomes are measured and how closely they are aligned with the intervention. This is what Slavin and Madden (2011) call *treatment-inherent or treatment-independent* measures. They define these as (p. 374):

1. “If a skill or concept has been taught to the experimental group but not to the control group, all measures of that skill or concept are treatment inherent.
2. Except for #1, standardized tests and other assessments not made by the developer or the experimenter are treatment independent.
3. Experimenter-made or developer-made assessments are treatment independent if curriculum is held constant in experimental and control groups (i.e., the groups differ in teaching method but not content). Otherwise, such assessments are treatment inherent.
4. If an experimental treatment gives students extensive practice with an unusual response format (such as computer-adaptive testing) to which the control group is not exposed, then measures using this response format are treatment inherent.”

Unsurprisingly, effect sizes for outcomes based on treatment inherent measures tend to be larger than those based on outcomes which are treatment independent (Slavin & Madden, 2011). Again, here the issue is what makes a fair test and what inference can reasonably be drawn from the findings. If, for example, a summer school evaluation uses standardised tests of reading and mathematics, although these would be treatment-inherent, this seems a reasonable way to evaluate the impact of a summer school and how much difference it has made, on average, to those who attend as we are interested in how a summer school might help children’s progress, usually those who are falling behind their peers. By contrast, a science reasoning intervention, which used a test which closely matches what the intervention covered, as opposed to a ‘business as usual’ group might simply show that when you teach something, on average, students improve. So the treatment inherent measure is an issue in terms of what the intervention group might have gained. The challenge is to use an outcome measure which is a fair test of the intervention or approach, taking the research question and design into account. It would not be reasonable to use a standardised mathematics test as an outcome measure for a phonics intervention. For the Toolkit, we prefer standardised tests (these are usually of reading comprehension or of mathematics) or curriculum measures which schools would normally use. Here we are interested in the predictive validity of the outcome measure in terms of how well it measures aspects of learning which are associated with later school success. The outcome measure needs to be both a fair test of the comparison being made and a fair test of learning progress.

Slavin and Smith (2009) report that there is a relationship between sample size and effect size in education research, with smaller studies tending to have larger effect sizes. The correlation found was -0.28 (p. 503), suggesting that this explains about 8% of the variation between large and small studies, with larger studies typically having smaller effect sizes. The issue is important in terms of comparing effects between different kinds of interventions which tend to be small scale (such as areas of research looking at interventions to address special needs for example) and others which tend to have larger samples (class size interventions for example). This association is also found in research in psychology (Kühberger, Fritz &
Scherndl, 2014) where the negative association is even stronger \((r = -0.45)\) explaining as much as 20% of difference (or from and effect size of 0.40 to 0.32).

Comparability may also be restricted for studies reporting effect sizes with groups from either end of the distribution (high attaining or low attaining learners), which are likely to be affected by regression to the mean (Shagen & Hogden, 2009). This would inflate effect sizes for low attaining pupils (who are more likely to get higher marks on re-test) and depress effect sizes for high performing students when they are compared with ‘average’ pupils. If the correlation between pre-test and post-test is 0.8, regression to the mean may account for as much as 20% of the variation in the difference between test and retest scores when comparing low and average students.

In addition to the factors discussion above, other factors are often explored in meta-analyses as part of a ‘moderator analysis’ to understand how they are related to effects, such as the length of the intervention (duration and/or intensity) or the quality of the research. The evidence here is less consistent and varies between syntheses, so it is hard to draw clear conclusions about any clear patterns of effect.

These issues all need to be considered when comparing (or combining effect) sizes (Higgins, 2016). One of the key assumptions of the Toolkit is that the factors which influence effect size such as those discussed above are relatively evenly distributed across the studies included, as any systematic variation might bias the overall pooled estimate. We are carrying out ongoing review and analysis to test this assumption.
17. References

